Application of YOLO Deep Learning Model for Real Time Abandoned Baggage Detection
2022-08-21 09:15:20

ผู้แต่ง:
Tossaporn Santad,Piyarat Silapasupphakornwong,Worawat Choensawat,Kingkarn Sookhanaphibarn
บทคัดย่อ:
We proposed an abandoned-baggage detection system that the baggage was left in public places for security reasons, i.e., subway stations. The proposed system applied the YOLO deep learning model for object detection, and presented a GUI for supporting a parameter setting. With this GUI, the detection system will be invariant to lighting and camera position.
คำสำคัญ:
cctv,image detection,surveillance,yolo,forensic
ลิงก์:
http://mit.itu.bu.ac.th/publications/yolo-2pages_v1.pdf
การอ้างอิง:
MLA : Santad, Tossaporn, et al. "Application of YOLO Deep Learning Model for Real Time Abandoned Baggage Detection." 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). IEEE, 2018.
การอ้างอิง:
APA : Santad, T., Silapasupphakornwong, P., Choensawat, W., & Sookhanaphibarn, K. (2018, October). Application of YOLO Deep Learning Model for Real Time Abandoned Baggage Detection. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE) (pp. 157-158). IEEE.
การอ้างอิง:
ISO 690 : SANTAD, Tossaporn, et al. Application of YOLO Deep Learning Model for Real Time Abandoned Baggage Detection. In: 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). IEEE, 2018. p. 157-158.